Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase.

نویسندگان

  • Grit Rothe
  • Akira Hachiya
  • Yasuyuki Yamada
  • Takashi Hashimoto
  • Birgit Dräger
چکیده

Putrescine N-methyltransferase (PMT) is the first alkaloid-specific enzyme for nicotine and tropane alkaloid formation. The pmt gene from Nicotiana tabacum was fused to the CaMV 35S promoter and integrated into the Atropa belladonna genome. Transgenic plants and derived root cultures were analysed for gene expression and for levels of alkaloids and their precursors. Scopolamine, hyoscyamine, tropine, pseudotropine, tropinone, and calystegines were found unaltered or somewhat decreased in pmt-overexpressing lines compared to controls. When root cultures were treated with 5% sucrose, calystegine levels were elevated in control roots, but were not affected in pmt-overexpressing roots. 1 microM auxin reduced calystegine levels in control roots, while in pmt-overexpressing roots all alkaloids remained unaltered. Expression level of pmt alone is apparently not limiting for tropane alkaloid formation in A. belladonna.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes

Atropa belladonna L. is the commercial plant to produce tropane alkaloids including hyoscyamine and scopolamine, which are widely used as anticholinergic agents. In the present study, the genes encoding the key enzymes including putrescine N-methyltransferase (PMT) and hyoscyamine 6β-hydroxylase (H6H) were simultaneously overexpressed in transgenic hairy root cultures of A. belladonna. All of t...

متن کامل

Expression Pattern of pmt, erf1 and jap1 Genes in Nicotiana benthamiana and Atropa belladonna Plants under UV Radiation, Wounding and Methyl Jasmonate Treatments

The Solanaceae plants produce a variety of interesting biologically active products including the steroid alkaloids solanidine, nicotine and tropane alkaloids. Putrescine N-methyltransferase (PMT) is an enzyme that catalyses s-adenosylmethionine-dependent methylation of putrescine in one of the primary steps of nicotine and tropane alkaloids biosynthesis pathway. Two tobacco members of the AP2/...

متن کامل

Metabolic engineering of plant alkaloid biosynthesis.

Plant alkaloids, one of the largest groups of natural products, provide many pharmacologically active compounds. Several genes in the biosynthetic pathways for scopolamine, nicotine, and berberine have been cloned, making the metabolic engineering of these alkaloids possible. Expression of two branching-point enzymes was engineered: putrescine N-methyltransferase (PMT) in transgenic plants of A...

متن کامل

Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures.

The medicinally applied tropane alkaloids hyoscyamine and scopolamine are produced in Atropa belladonna L. and in a small number of other Solanaceae. Calystegines are nortropane alkaloids that derive from a branching point in the tropane alkaloid biosynthetic pathway. In A. belladonna root cultures, calystegine molar concentration is 2-fold higher than that of hyoscyamine and scopolamine. In th...

متن کامل

A Comprehensive Overview on Valuable Tropane Alkaloids: Scopolamine, Atropine, and Hyoscyamine

Tropane alkaloids such as scopolamine (C17H21NO4), atropine (C17H23NO3) and hyoscyamine (C17H23NO3) are the most important plant secondary metabolites in the pharmaceutical industry due to anticholinergic activity, competition with muscarinic receptors and also treating different human diseases. Scopolamine, hyoscyamine and atropine are the most important tropane alkaloids used as anticoagulant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 54 390  شماره 

صفحات  -

تاریخ انتشار 2003